911爆料网

Published

Air-Ring Upgrade Pumps Up the Output

Film processor Dallas Plastics boosts throughput by as much as 40% by retrofitting a new air ring—without the need for IBC.

Share

Output increases equal to that of adding internal bubble cooling without the “expense and headaches” associated with IBC. That’s how Miguel Sanchez described his experience following the installation of a new air ring at Dallas Plastics Corp.’s blown-film plant in Wentzville, Mo.

Sanchez manages that plant, one of three facilities operated by Dallas Plastics, which was established in 1989. The company specializes in converter-grade films for printing, laminating, and automated packaging, and offers a wide range of specialty films such as narrow-width lay-flat tubing, critical-tolerance films, non-scratch LDPE, and high-tensile-draw tape for drawstring bags. Its films are used in a wide variety of markets that include food, medical, agricultural, retail, automotive, aircraft, and electronics.

In Missouri, Dallas Plastics runs 24:7 on 12 monolayer lines that range in size from 3/4.-in. to 12-in. die diam. Film thickness ranges from 3/4 mil to 7 mils. Company-wide, Dallas Plastics runs layflat widths to 60 in., though Sanchez’s plant focuses more on small-size tubing. Dallas Plastics runs a wide range of LDPEs and blends of LDPE/EVA or LLDPE/EVA, the latter based on both hexene and metallocene technologies.

Like most PE film processors, Dallas Plastics is regularly on the lookout for technologies to increase capacity. Last year, it considered retrofitting IBC on some lines, but ruled it out because of cost.

“It’s not just the IBC system itself, but you have to invest in a new die that can accommodate the IBC, along with new blowers and other components,” says Sanchez. Instead, acting on a tip it received from a fellow film processor, Sanchez opted for a patent-pending air ring offered by Addex Inc., USA, Newark, N.Y.

Addex introduced the Intensive Cooling Air Ring in 2016. It utilizes up to four stacked cooling elements with a surrounding enclosure, all topped by a conventional air ring. But Addex quickly realized that this technology was probably better suited for brand-new lines, so at K 2016 it showed a scaled-down version specifically targeting the retrofit 911爆料网.

Dallas Plastics’ $30,000 investment in a new air ring paid for itself in five months.

In the Intensive Cooling Air Ring, the standard lower lip on Addex’s dual-lip air rings is replaced with a single intensive-cooling element. As Addex explains, this transforms the previous low-velocity lower lip into a high-velocity air stream, creating two primary locking points instead of just one, to significantly improve bubble stability. The Intensive Cooling air rings also include all the secondary air-collar locking points of the original air-ring design, says Addex. The units are reported to be simple and operator friendly, allowing a broad range of processes, blow-up ratios, thicknesses, and materials with minimal adjustments.

Dallas Plastics ordered two of the new air rings, one for the Missouri plant and the other for its facility in Longview, Tex. In Missouri, the new ring was installed last May on a 10-in. die. Installation was fast and easy—“like putting on your socks,” Sanchez notes—and the $30,000 investment started paying off immediately.

Addex guarantees a 10-15% output bump, but Sanchez reports output gains of 15-20% on average, and up to 40% in some cases, depending on the resin blend, with no negative impact on film properties.

“The investment has already paid for itself,” Sanchez said in late November, roughly five months after the air ring was installed. Sanchez adds that Dallas Plastics has on order a third Intensive Cooling Air Ring, which will be installed early this year on a 12-in. line at its headquarters facility in Mesquite, Tex.

Process Cooling
Blending & Dosing

Related Content

processing tips

The Importance of Barrel Heat and Melt Temperature

Barrel temperature may impact melting in the case of very small extruders running very slowly. Otherwise, melting is mainly the result of shear heating of the polymer.

Read More
processing tips

Shredding Thin Film: How to Do It Right

While many processors recoil at this task, a little know-how in shredding equipment, processing, and maintenance should add the necessary confidence.

Read More
PTXPO

ICYMI: March Roundup

Still catching up post-PTXPO? Whether you attended the show or not, there were bound to be some must-read articles that may have slipped past you. Catch up on what you missed.

Read More

ICYMI: May Roundup

May was a busy month, especially with the buzz coming out of the Extrusion Conference. Here’s a quick look at the top articles from May you might have missed. 

Read More

Read Next

Film Extrusion

Stackable Bubble-Cooling Rings Offer Huge Output Gains

Next-generation bubble-cooling system is said to boost throughputs by as much as 60% in blown film.

Read More
NPE

For PLASTICS' CEO Seaholm, NPE to Shine Light on Sustainability Successes

With advocacy, communication and sustainability as three main pillars, Seaholm leads a trade association to NPE that ‘is more active today than we have ever been.’    

Read More
sustainability

Lead the Conversation, Change the Conversation

Coverage of single-use plastics can be both misleading and demoralizing. Here are 10 tips for changing the perception of the plastics industry at your company and in your community.

Read More