911±¬ÁÏÍø

Published

Get Ready for an Explosion in Additive Manufacturing

From the Editor

If you want very small production runs, or to do more of your own mold building, ‘AM’ might be for you.

Share

We’ve spotted repeated signs of it—and reported on it—for the past several years. The it I’m referring to is additive manufacturing (AM), sometimes called 3D printing, or what old-timers like yours truly used to know as rapid prototyping.

Except it’s not just for prototyping anymore. It’s also for making real production parts. Slowly, yes, compared with injection molding, but cost-effectively for very small volumes.
As my colleague Tony Deligio reported in his recent blog,  GE Aviation recently decided to use additive manufacturing for all the fuel nozzles on its LEAP aircraft engines. Tony quotes Tim Caffrey, senior consultant at , Fort Collins, Colo., who referred to GE’s move in a blog posting of his own as “one of the most significant milestones in the history of the additive manufacturing industry.” Caffrey noted that a “major corporation publically declared its confidence in AM for a demanding production application in a hostile and critical operating environment.”

On its own website, General Electric itself states it is “using laser-powered 3D printers, 3D ‘inking’ and ‘painting’ machines, and other advanced manufacturing tools to make parts and products that were thought impossible to produce and which sometimes verge on art. We see advanced manufacturing as the next chapter in the industrial revolution.”

In our world of plastics processing, we’ve reported on quite a few molders who have entered the word of additive manufacturing, sometimes by buying AM service bureaus. We’ve also reported on how plastics materials are being developed to bring AM parts into more and more demanding applications. And at the K 2013 show in Dusseldorf last October, Arburg, one of the most-respected names in injection molding machinery, unveiled the Freeformer system, an inkjet-type 3D printer that builds up parts droplet by droplet in thin layers. It would not be far-fetched to predict that more injection machine builders will be introducing AM machines of their own in the coming years.

For molders, AM technology offers potential in two areas. First, it provides a new means to produce plastic parts that either have part geometries too complex for conventional molding or would be economically unfeasible to mold because of low volumes. In that regard, it is a complementary process to injection molding. Second, it offers molders an opportunity to build mold inserts and other tooling components on their own. 

In a recent study, Dallas-based  m) projected that demand for plastics processing machinery globally will increase 7% a year through 2017 to $37.6 billion. While the report projects that more injection molding machinery will be purchased than any other kind of processing equipment—accounting for 40% of overall new machinery sales—RNR’s research indicates that demand for AM technology “is expected to grow the fastest of any plastics processing equipment type” through 2017, albeit from a small current base.

We’ll be focusing more editorial resources on this important subject. We’ve added an Additive Manufacturing Zone to our website, where you’ll be able to quickly research all of the articles we’ve written on the subject from one location. And we’ll certainly be on top of the technology on display in this area at next year’s NPE show. Is this technology for you? Best to take a close look. 

Blending & Dosing
Process Cooling
Plastics Size Reduction

Related Content

Additives

Insight Polymers & Compounding Unveils New Conductive Products Line

The new conductive products line will also be produced for injection molding and extrusion.

Read More

How 3D Printing Supports Toolmaking Workforce at This Multiscale Molder

At more than a century old, General Pattern has seen multiple evolutions in its 911±¬ÁÏÍø — the latest of which is the embrace of additive manufacturing technologies for mold tooling and beyond.

Read More
Automation

Smooth Operators: Vibration Compensation Improves Robot Performance

Ulendo is working to apply its vibration compensation algorithm to robots. This application is more complex than its initial market of fused filament fabrication 3D printers, but could result in faster, cheaper robots.

Read More

KraussMaffei Nears Completion of Corporate Headquarters Move

The 185-yr old German maker of plastics processing machinery is shifting to a more than 200,000-m2 greenfield site in Parsdorf.

Read More

Read Next

sustainability

Lead the Conversation, Change the Conversation

Coverage of single-use plastics can be both misleading and demoralizing. Here are 10 tips for changing the perception of the plastics industry at your company and in your community.

Read More
NPE

Beyond Prototypes: 8 Ways the Plastics Industry Is Using 3D Printing

Plastics processors are finding applications for 3D printing around the plant and across the supply chain. Here are 8 examples to look for at NPE2024.

Read More